標題:
數學 M2 三角學?
發問:
求37所有分題,請詳細列式
最佳解答:
(a) BC交DE於H DP=AP*Cosθ DQ=BD*Cosθ QH=BH*Cos(2π/3-θ) RH=CH*Cos(2π/3-θ) PQ=DQ-DP=(BD-AP)*Cosθ=xCosθ QR=QH-RH=(BH-CH)*Cos(2π/3-θ)=xCos(2π/3-θ) Set m=π/3-θ 2π/3-θ=m+π/3,θ=π/3-m PR/x=PQ/x+QR/x =Cosθ+Cos(2π/3-θ) =Cos(π/3-m)+Cos(m+π/3) =2Cos(π/3)Cosm =Cosm =Cos(π/3-θ) Cosθ+Cos(2π/3-θ)=Cos(π/3-θ) (b) PR/x=PQ/x+QR/x Cosθ+Cos(2π/3-θ)=Cosθ (c) Cos(π/4)+Cos(2π/3-π/4)=Cos(π/3-π/4) Cos(π/4)+Cos(5π/12)=Cos(π/12) Cos(π/4)+Sin(π/2-5π/12)=Cos(π/12) Cos(π/4)+Sin(π/12=Cos(π/12) Cos(π/12)-Sin(π/12)=Cos(π/4) Cos(π/12)-Sin(π/12)=√2/2 設Cos(π/12)+Sin(π/12)=t>0 [Cos(π/12)+Sin(π/12)]^2+[Cos(π/12)-Sin(π/12)]^2=t^2+1/2 t^2+1/2=2 t^2=3/2=6/4 t=√6/2 Cos(π/12)+Sin(π/12)= √6/2 (e) [Cos(π/12)+Sin(π/12)]+[Cos(π/12)-Sin(π/12)]= √6/2+√2/2 2 Cos(π/12)=√6/2+√2/2 Cos(π/12)=(√6+√2)/4 Sec(π/12)=4/(√6+√2)=4(√6-√2)/4=√6-√2
此文章來自奇摩知識+如有不便請留言告知
其他解答: